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Abstract
In this paper, we generate the Lax pair of the nonconservative Gross–Pitaevskii
(GP) equation with time-dependent linear and harmonic oscillator potentials
and construct a multisoliton solution using gauge transformation. We show how
an interplay between the dispersion coefficient, scattering length and atomic
feeding can suitably be exploited to remote control the dynamics of solitons,
thereby generating favorable profiles of Bose–Einstein condensates (BECs),
notable among them being the matter wave similaritons.

PACS numbers: 02.30.Ik, 02.30.Jr, 05.45.Yv

1. Introduction

The identification of Bose–Einstein condensates (BECs) [1–4] has given a new dimension to
the field of condensed matter physics and atom optics, and has generated immense interest in
understanding the dynamics of ultra-cold matter. In fact, the domain of BECs has virtually
blossomed in the last decade or so, ever since the experimental realization of dark [5] and
bright solitons [6], Faraday waves [7], gap solitons [8], etc.

It should be mentioned that the evolution of the macroscopic wavefunction of these
condensates is described by the mean field Gross–Pitaevskii (GP) equation which is an
inhomogeneous nonlinear Schrödinger (NLS) equation. The presence of the inhomogeneity in
the GP equation which can be attributed either to the trapping potentials or to the nonuniformity
of the media has always made the construction of analytic solutions a formidable exercise.
Even though the Darboux transformation method [9] has recently been employed to generate
soliton solutions [10], the construction of multisoliton solutions using this approach even today
remains a challenging task besides being cumbersome. The gauge transformation approach
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[11] has come in handy at this juncture as it facilitates the construction of multisoliton solution
from the associated linear eigenvalue problem starting from a trivial seed solution [12–14].

Recently, it was shown [10, 12] that when the binary interatomic interaction varies
exponentially with time at a rate that equals the trapping potential strength, the matter wave
densities can suitably be manipulated either to compress or broaden the condensates without
causing either the explosion or the collapse of the condensates. This severe restriction would
make the exact solutions of the GP equation less interesting from an experimental point of
view. In addition, it would also be interesting to investigate the dynamics of the condensates
under the impact of an external time-dependent (or constant) force to explore the possibility
of controlling the evolution of condensates without the trapping potential. The present paper
is aimed at softening the restriction arising from the dependence of interatomic interaction on
the trapping potential strength as it tries to generate the exact analytic solutions of the variable
coefficient GP equation in the presence of time-dependent linear and harmonic oscillator
potentials by the addition of a nonconservative force originating by virtue of time-dependent
atomic feeding. In particular, we attempt to generate localized excitations in BECs arising by
virtue of the delicate balance existing between the strength of harmonic trap, scattering length,
dispersion coefficient and atomic feeding. The fact that the above-mentioned parameters of
the associated dynamical system are time dependent ensures that our results are tailor made
for realistic experiments.

Considering the variable coefficient GP equation with time-dependent linear and harmonic
oscillator potentials in the presence of time-dependent atomic feeding [15], we have

iQt +
D(t)

2
Qxx + σR(t)|Q|2Q − 2α(t)xQ − �2(t)

2
x2Q +

ig(t)

2
Q = 0 (1)

where D(t) and R(t) represent dispersion coefficient and nonlinearity amplitude (interatomic
interaction) respectively while �(t) describes the confining time-dependent harmonic trap and
the coefficient of linear potential α(t) represents in general gravity of the dynamical system
under consideration, g(t) represents the time-dependent atomic feeding of the condensates
from the thermal cloud. Investigation of this variable coefficient GP equation assumes
tremendous significance from the perspective of nonlinear optics and condensed matter
physics. From equation (1), we observe that when D(t) = 1, α(t) = 0, �(t) = constant,
g(t) = 0, it reduces to the GP equation which models the evolution of the condensates in the
presence of harmonic potentials [10, 12]. When D(t) = 1, α(t) = 0, g(t) = 0, it describes
the dynamics of the condensates in a time-dependent trapping potential [14, 16, 17]. When
D(t) = 2, α(t) = 1/2, R(t) = constant, �(t) = 0 and g(t) = 0, it reduces to the GP equation
with a linear potential [18]. When α(t) = 0, D(t) = R(t) = 1, it reduces to the variable
coefficient NLS equation admitting optical similaritons [19]. Thus, one understands that the
investigation of equation (1) will open new avenues to perform realistic experiments in optical
fibres and BECs.

2. Lax pair and multisoliton solution

Under the following transformation,

Q(x, t) =
√

D(t)

R(t)
exp

[−ix2�(t)

2

]
q(x, t) (2)

equation (1) can be transformed into the following form,

iqt +
D(t)

2
qxx + σD(t)|q|2q − iD(t)x�qx − iD(t)�q − 2α(t)xq = 0, (3)
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where

�(t) = D(t)R′(t) − R(t)D′(t)
D(t)2R(t)

− g(t)

D(t)
(4)

�2(t)D(t) = D′(t)2 − D(t)D′′(t)
D(t)2

+
R(t)R′′(t) − 2R′(t)2

R(t)2

+
D′(t)R′(t)
D(t)R(t)

− g′(t) − g(t)D′(t)
D(t)

+
2g(t)R′(t)

R(t)
− g(t)2. (5)

Equation (5) suggests that a suitable interplay between dispersion coefficient D(t), scattering
length R(t), atomic feeding g(t) and time-dependent harmonic trap �(t) can generate various
kinds of localized excitations in the condensates. The arbitrary nature of the scattering length
R(t), atomic feeding g(t) and dispersion coefficient D(t) as it is evident from equation (5)
suggests that this model is tailor made for experiments.

Equation (3) admits the following linear eigenvalue problem,

�x = U�, U =
( −iζ(t)

√
σq(x, t)

−√
σq(x, t)∗ iζ(t)

)
(6)

�t = V �

V = i

(
σ
2 D(t)|q|2 − αx

√
σD(t)

(
1
2qx − i�xq

)
√

σD(t)
(

1
2q∗

x + i�xq∗) − σ
2 D(t)|q|2 + αx

)

− iζ(t)D(t)

(
�x i

√
σq

−i
√

σq∗ −�x

)
− iζ(t)2D(t)

(
1 0

0 −1

)
, (7)

where ζ is the complex nonisospectral parameter obeying the first-order linear differential
equation of the form

ζt = α(t) + D(t)�(t)ζ (8)

Thus, it is obvious that the compatability condition Ut − Vx + [U,V] = 0 generates
equation (3) (keeping in mind equation (8)). Considering a trivial seed solution q(0) = 0
and employing the gauge transformation approach [11], we obtain the bright two soliton
solution of equation (1) for σ = 1 as

Q(2) =
√

D(t)

R(t)

(
A1 + A2 + A3 + A4

B1 + B2 + B3

)
e( −ix2

2 ( D(t)R′(t)−R(t)D′(t)
D(t)2R(t)

− g(t)

D(t)
)) (9)

where

A1 = −2β2(ζ2 − µ1)(µ2 − µ1) e−θ1−iψ2 ,

A2 = −2β2(µ2 − ζ1)(ζ2 − µ1) eθ1−iψ2 ,

A3 = −2β1(µ2 − ζ1)(µ2 − µ1) e−iψ1−θ2 ,

A4 = −4iβ1β2(ζ2 − ζ1) e−iψ1+θ2 ,

B1 = (ζ2 − ζ1)(µ2 − µ1) cosh(θ1 + θ2),

B2 = (ζ2 − µ1)(µ2 − ζ1) cosh(θ1 − θ2),

B3 = −4β1β2 cos(ψ1 − ψ2),
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Figure 1. Effect of time-dependent trap on the dynamics of BECs with g(t) = −0.15t, R(t) =
exp(−∫

0.25t dt), D(t) = 1, α(t) = 0.

and

ζi(t) = αi(t) + iβi(t), µi = ζi, i = 1, 2

αi = exp
∫ (

−g(t) +
R′(t)
R(t)

− D′(t)
D(t)

)
dt

×
[
α0 +

∫
Exp

(∫
g(t) − R′(t)

R(t)
+

D′(t)
D(t)

dt

)
α(t) dt

]

βi = exp
∫ (

−g(t) +
R′(t)
R(t)

− D′(t)
D(t)

)
β0(t) dt

θi = 2βix + 4
∫

D(t)αi(t)βi(t) dt − 2δi

ψi = 2αix + 2
∫

D(t)[αi(t)
2 − βi(t)

2] dt + 2φi.

Looking at the nature of the soliton solution given by equation (9), one observes that an
interplay between dispersion coefficient D(t), scattering length R(t) and atomic feeding g(t)

can be suitably exploited to remote control the dynamics of BECs.

3. Interaction of solitons and discussion

Case (i). When D(t) = 1, α(t) = 0, the profile of the condensates is shown in figures 1 and 2.
Figure 1 shows that there is an enhancement in the densities of solitons by virtue of the
negative atomic feeding (gain) while the matter wave densities decrease due to the reversal of
the sign of the atomic feeding as shown in figure 2. It can also be observed from figures 1
and 2 that even though the scattering length decreases exponentially with time, there is either
compression (figure 1) or broadening (figure 2) of the solitons under the impact of atomic
feeding (gain/loss) and this underscores the dominance of atomic feeding g(t) over the binary
interatomic interaction R(t).

Case (ii). Figure 3 shows the effect of zero trapping potential (both linear and harmonic)
on the evolution of the condensates. From this, one observes that one can enhance the
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Figure 2. Effect of time-dependent trap on BECs with g(t) = 0.01t, R(t) = exp(−∫
0.25t dt),

D(t) = 1, α(t) = 0.
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Figure 3. Matter wave similaritons under zero trapping potential with g(t) = −0.25t, R(t) =
exp(−∫

0.25t dt), D(t) = 1, α(t) = 0.

amplitude of solitons by suitably manoeuvring the atomic feeding thereby reinforcing the fact
that stabilization of the condensates is indeed possible even without the trapping potentials
by suitably feeding from the thermal cloud. The increase of amplitude of solitons as shown
in figure 3 and the enhancement of width observed in figure 4 is reminiscent of optical
similariton solutions [19], where the amplitude and width of the waves simply scale with
time or propagation distance. We call these solutions ‘matter wave similaritons’. Thus, we
observe that it is possible to generate similaritons in BECs by suddenly switching off the
time-dependent field (trap).

The moment the atomic feeding is switched off, the effect of binary interatomic interaction
comes into play resulting in the dispersion of solitons. This is illustrated in figure 5
wherein the two solitons get dispersed and fizzle out in the absence of atomic feeding
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Figure 4. Contour plot of matter wave similaritons with g(t) = −0.25t, R(t) = exp(−∫
0.25t dt),

D(t) = 1, α(t) = 0.
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Figure 5. Effect of time-dependent harmonic trap and the absence of feeding on BECs with
g(t) = 0, R(t) = exp(−∫

0.25t dt), D(t) = 1, α(t) = 0.

by virtue of the exponentially decreasing scattering length. It is worth noting at this
juncture that for exponentially decreasing scattering lengths, the matter wave density of the
condensates moving in a time-dependent trap [14] and harmonic potential [10, 12] decreases
slowly.

Case (iii): Figures (6) and (7) bring out the effect of periodic and constant atomic feeding on
Feshbach resonance management of condensates. Periodic feeding of BECs ensures that their
density can be manipulated to reach a maximum value at regular intervals of time as shown in
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Figure 6. Feshbach resonance managed solitons with g(t) = sin(
√

2t), R(t) = D(t) = α(t) =
0.4 sin (

√
2t).
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Figure 7. Feshbach resonance managed solitons with g(t) = − 0.1, R(t) = D(t) = α(t) =
0.4 sin(

√
2t).

figure 6 while constant feeding of atoms shows that |Q|2 continues to increase periodically as
shown in figure 7.
Case (iv): Figure 8 shows the effect of gravity on the evolution of BECs through atomic
feeding. From this, one observes that the trajectory of the two solitons gets curved and the
density of the condensates increases.

From the above, it is evident that even though the variable coefficient GP
equation (1) admits five parameters of different physical significance, the arbitrary time-
dependent atomic feeding g(t) prevails over the other parameters in controlling the dynamics
of BECs. Hence, the quasi-one-dimensionality of the system which is related to the low
densities of the condensates depends on how far one can feed the atoms to the condensates
from the thermal cloud. Thus, by suitably exploiting the arbitrary nature of the atomic feeding
g(t) (consistent with equation (5)), one can ensure the quasi-one-dimensionality of the system
under consideration.

In this paper, we have constructed the Lax pair of the nonconservative GP equation
and have shown how the atomic feeding can suitably be manipulated to remote control the
dynamics of Bose-Einstein condensates in a favourable manner. We have also brought out
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Figure 8. Effect of linear potential on BECs with g(t) = −1/t, α(t) = −0.2t, R(t) = 0.1t,
D(t) = 0.2t.

the dominance of atomic feeding g(t) over the binary interatomic interaction R(t) and the
harmonic trap �(t). Our results reinforce the fact that the condensates can be stabilized even
without the trap and this occurs no matter whether there is an increase or decrease of scattering
length.
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